Predicting protein functions with message passing algorithms
نویسندگان
چکیده
منابع مشابه
Predicting protein functions with message passing algorithms
MOTIVATION In the last few years, a growing interest in biology has been shifting toward the problem of optimal information extraction from the huge amount of data generated via large-scale and high-throughput techniques. One of the most relevant issues has recently emerged that of correctly and reliably predicting the functions of a given protein with that of functions exploiting information c...
متن کاملMobile Agent Algorithms Versus Message Passing Algorithms
The mobile agent paradigm has been developed to solve problems in dynamic and heterogeneous environment [8]. The agent model of this paper is quite general. It is based on the concepts of agents, communication links and places. An agent is an entity which executes an algorithm: it can move from place to place (with some data and its algorithm) through communication links and it can make local c...
متن کاملConvergent message passing algorithms - a unifying view
Message-passing algorithms have emerged as powerful techniques for approximate inference in graphical models. When these algorithms converge, they can be shown to find local (or sometimes even global) optima of variational formulations to the inference problem. But many of the most popular algorithms are not guaranteed to converge. This has lead to recent interest in convergent message-passing ...
متن کاملSolving Sudoku Using Combined Message Passing Algorithms
In this paper we apply message-passing algorithms to solve Sudoku puzzles. We provide explicit expression for the sum-product algorithm and the max-product algorithm and analyze the difference between the algorithms in terms of performance and efficiency. The failure of the max-product algorithm when been applied to Sudoku problem is due to the existence of stopping-sets. We show empirically th...
متن کاملMessage Passing Algorithms for Compressed Sensing
Compressed sensing aims to undersample certain high-dimensional signals yet accurately reconstruct them by exploiting signal characteristics. Accurate reconstruction is possible when the object to be recovered is sufficiently sparse in a known basis. Currently, the best known sparsity-undersampling tradeoff is achieved when reconstructing by convex optimization, which is expensive in important ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2004
ISSN: 1367-4803,1460-2059
DOI: 10.1093/bioinformatics/bth491